• Home
  • About Us
  • Privacy Policy
  • Contact Us
No Result
View All Result
  • Home
  • Structure
  • Geotechnical
  • Highway
  • Research
  • Reinforced concrete structures
Insidecivil
ADVERTISEMENT
  • Structure
  • Highway
  • Project Management
  • Research
  • Q&A Segment
ADVERTISEMENT
  • Home
  • Structure
  • Geotechnical
  • Highway
  • Research
  • Reinforced concrete structures
No Result
View All Result
Insidecivil
No Result
View All Result
Home Structure

Moment distribution method why it works

Celestinemary by Celestinemary
April 21, 2020
0
Share on FacebookShare on TwitterShare on WhatsappShare on Telegram

Like slope deflection method, moment distribution is a displacement method of analysis of indeterminate structures. In fact essentially it consists of solving the simultaneous equations of the slope deflection by an iterative technique. It’s not an approximate method but a method of successive approximation where any degree of accuracy can be obtained by repeated iteration. The moment distribution is not always recognized as a deformable variable method because the computations are carried in terms of moment produced by the changes in the deformable variable. This is all the more advantageous because in structural problems we are interested in finding the bending moments rather than slopes and deflections. Before the advent of computers, this method was developed by Hardy cross of the university of Illinois, Urbana, USA, in 1930. Even in this age of computer, the method will be useful in preliminary designs and in checking of computer results.
The moment distribution method starts from the same basic assumption made in the slope deflection method. In the analysis of continuous beams and frames all joints are assumed fixed and the moments are then corrected.

SIGN CONVENTION
Though different types of sign conventions are adopted by different authors in their books, yet the following sign conventions, which are widely used and internationally recognized will be used in this post:
1)All the clockwise moments at the ends are taken as positive
2) All the anticlockwise moments at the ends are taken as negative

CARRY OVER FACTOR
That the moments are applied on all the end joints of a structure, whose effects are evaluated on the joints. The ratio of moment produced at a joint to the moments applied at the other joint, without displacing it, is called CARRY OVER FACTOR

The important steps in moment distribution method are:
1) Lock all joints and determine the fixed-end moments that result.
2)Release the lock on a joint and apply the balancing moment to that joint.
3) Distribute the balancing moment and carry over moments to the (still -locked) adjacent joints. 4) Re -lock the joint. 5) Considering the next joint, repeat steps 2 to 4. 6) Repeat until the balancing and carry over moments are only a few percent of the original moments.

The reason this is an iterative procedure is (as we will see) that carrying over to a previously balanced joint unbalances it again. This can go on ad infinitum and so we stop when the moments being balanced are sufficiently small (about 1 or 2% of the start moments). Also note that some simple structures do not require iterations. Thus we have the following rule: For structures requiring distribution iterations, always finish on a distribution, never on a carry over This leaves all joints balanced (i.e. no unbalancing carry-over moment) at the end.

Stiffness factor

It is the moment required to rotate the end, while acting on it, through a unit angle without translation of the far end.

DISTRIBUTION FACTOR AT A PINNED END AND AT A FIXED END

At a pinned end we can imagine that there is a fictitious member outside the structure exists but it has I=0. Therefore, the distribution factors at a pinned joint are 1 for the real member side and 0 for other side. At a fixed joint we can think of the wall as a member with infinite stiffness, the distribution factors yield a value of Zero for the member and 1 for the wall.

Example 2

Celestinemary

Celestinemary

Related Posts

Application of influence line for statically determinate structures

June 2, 2020

Application of Principle of virtual work

May 12, 2020

Using different displacement methods of Analysis for frames

May 2, 2020

Analysis of sway and non – sway frame

April 28, 2020

Analysing of beam with a sinking support

April 23, 2020

Application of superposition in analysis of continuous beams using Moment distribution method

April 23, 2020

Analysis of continuous beam using slope deflection method

April 8, 2020

Alternate formulation of three moment method of analysing continuous beam

April 3, 2020

Analysis of continuous beam using staad-pro vi8 versus Manual approach( Three moment method)

March 27, 2020

Introduction to statically indeterminate structures

March 26, 2020
Load More
Next Post

Application of superposition in analysis of continuous beams using Moment distribution method

Analysing of beam with a sinking support

Questions for this week(24-04-2020)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Insidecivil was created bearing students and professionals in mind. This platform will be a bank of information on civil engineering and allied discussions, articles, tutorials, designs, mentoring that would enable students and professionals enter inside civil and discover themselves.

Menu

  • Home
  • Structure
  • Geotechnical
  • Highway
  • Project Management
  • Research
  • Q&A Segment
  • Reinforced concrete structures
  • About Us
  • Contact Us
  • Privacy Policy

Recent Post

  • Application of influence line for statically determinate structures
  • Application of Principle of virtual work
  • Solutions to the questions of the week(08-05-2020)
  • Questions of the week(08-05-2020)

© 2020 Insidecivil - Design By XcodeTech.

No Result
View All Result
  • Home
  • Structure
  • Geotechnical
  • Highway
  • Project Management
  • Research
  • Q&A Segment
  • Reinforced concrete structures
  • About Us
  • Contact Us
  • Privacy Policy

© 2020 Insidecivil - Design By XcodeTech.